
1

OPEN SOURCE LICENSE 
COMPLIANCE

Richard E. Fontana
Open Source Licensing & 
Patent Counsel, Red Hat
May 27, 2010 



2

 Historical background, definitions and characteristics
 License categories: copyleft (strong, weak), permissive
 License enforcement
 License compliance – due diligence; source code analysis; 

some mechanics

AGENDA



3

 Nonproprietary code-sharing commons
 Exclusive property concepts gradually got mapped to software 

(©, trade secrets, patents)
 Gave rise to business models based on contractually licensing 

subsets of rights

 Free software licensing models emerged shortly thereafter – 
deploying legal machinery of restrictive licenses to encourage 
collaborative development, distributed improvement & 
widespread adoption

HISTORICAL BACKGROUND



4

 Hundreds of licenses customarily considered FLOSS
 Newer projects standardizing around small set of popular 

licenses
 No single canonical definition

 Evolving legal norms based in community consensus, 
embodied in development and distribution practices

 Influential organizations: FSF, Debian, OSI, Fedora
 Everyone should adopt strictest community standards for what 

is/isn’t authentic FLOSS

DEFINING FREE/LIBRE/OPEN 
SOURCE



5

  Legal: 
 User gets a broad © license: perpetual, RF; 

 Essentially unlimited private use
 Public use restricted only in ways not customarily regarded as 

unduly burdensome to software freedom
 Technical:

 Either it’s source code, or license provides for readily 
available source code at no further cost

CHARACTERISTICS OF FLOSS



6

 Copyleft
 Strong 
 Weak 

 Permissive/Non-copyleft

LICENSE CATEGORIES



7

 License limits freedom of user to distribute derivative work under 
more restrictive terms

 Usually there is some source code disclosure requirement

 Typically, that source code, at least, must be under the same 
license as upstream

COPYLEFT



8

 GPLv2 by far the most widely-used FLOSS license, for 
established as well as new projects

 Policy goal: Preserve free software commons, even as software 
gets improved downstream

 “Strong”: licensor expectation that copyleft cover all 
enhancements, regardless of artful packaging – the “whole 
work”

 Circumvention should be technically cumbersome 

STRONG COPYLEFT (GPL)



9

  Distribution of modified version must be under GPL
 Exception for “mere aggregation”

 No imposition of “further restrictions” on downstream exercise of 
GPL rights

 Corollary: liberty-or-death clause
 Accompany binaries with complete corresponding source 

code licensed under GPL
 Amount of source code ≈ copyleft scope

 What a skilled developer needs to rebuild
 System library exception

GPL REQUIREMENTS



10

 Interesting/difficult questions arise regarding GPL copyleft scope 
in various technical contexts involving combinations of 
components

 From a legal risk perspective, issues are mostly academic
 Projects and businesses should comply with GPL by making 

good faith effort to satisfy strong copyleft policy goals
 FSF continues to provide persuasive guidance; narrow 

interpretations are non-customary

GPL COPYLEFT SCOPE



11

 

 Originate in community criticism of strong copyleft
 Popular examples: LGPL, MPL and EPL families

 LGPLv2.x second most popular FLOSS license
 Common features:

 Copyleft scope (including source code requirement) limited 
to something less than GPL “whole work”

 Can distribute proprietary executables 
 Wide gap between LGPL text and liberal customary 

interpretation

WEAK COPYLEFT



12

 Popular examples: BSD, MIT/X11, and Apache families
 Continuation of older public domain tradition + reaction against 

strong copyleft
 Policy goal: maximize downstream adoption, protect upstream 

developers from legal/reputational risk
 Derivative works licensable under more restrictive terms 

(proprietary, GPL if compatible)
 Notice requirements, but no source code requirement

 But often strong social expectation to contribute some 
improvements upstream

PERMISSIVE (NON-COPYLEFT)



13

 FLOSS licenses are generally assumed to be legally 
enforceable (cf. Jacobsen v. Katzer)

 Litigation risk is so low that compliance is motivated principally 
by ethical and social concerns

 Prior to 2000s, all license enforcement took place outside of 
court system

 Active GPL enforcement after 2000 focuses mainly on 
embedded device vendors, brought by small group of prominent 
licensors

 Simple fact patterns: no source code – material violation

LICENSE ENFORCEMENT



14

 Understand the reasonable customary expectations of 
upstream developers

 Downstream lawyers should avoid forcing community-developed 
licensing traditions into ill-fitting proprietary legal frameworks

 Downstream commercial users should become upstream 
contributors!

 Developing good relationships with upstream communities 
minimizes enforcement risk and aids compliance

 Be wary of companies with “dual-license” business models

APPROACHING LICENSE 
COMPLIANCE



15

 FLOSS license compliance is usually easy once you figure out 
applicable license terms

 Both projects and vendors should exercise legal care in using 
third-party code, as early as possible

 Good software development practices lead to good license 
compliance

 E.g. version control facilitates GPL compliance: you know 
exactly what sources were used to build a given binary

 Developers should document how to generate build

PRODUCT/PROJECT DEVELOPMENT



16

 Be able to reconstruct how code was put together and where it 
came from

 Biggest problem is device vendors obtaining firmware from 
suppliers without inquiry into licensing issues

 Transparency in use of third-party code aids diligence
 Projects as well as commercial product developers benefit 

from explicit legal guidelines
 Developers should not use prebuilt upstream binaries!

DUE DILIGENCE – INBOUND CODE



17

 Lawyers need to acquire some skills to extract legal information 
from source code

 Understand how legal information is customarily recorded 
and presented by upstream developers

 COPYING files, source code ‛headers’, GPL exceptions, 
disjunctive dual licensing, etc.

 Identify external dependencies
 Understand software build techniques
 Determine who committed what

SOURCE CODE ANALYSIS



18

  Notice requirements (esp. for permissive licenses)
 For binary distributions, best practice is to maintain a text file 

that contains all required legal notices
  Source code requirements (copyleft licenses)

COMPLIANCE MECHANICS



19

  3-year written offer or accompany binary with source
 Latter usually preferable for vendors except in embedded 

scenarios; always for projects
 Don’t use offer to postpone dealing with problem! 
 FSF: for network distribution, can point to location hosted by 

third party (explicit in GPLv3)
 Source offer not available for network distribution in GPLv3

 Must include build scripts and build instructions
 Should provide information on what compiler was used

SOURCE CODE REQUIREMENTS: 
GPL



20

 LGPL: Can generally follow GPL rules; “suitable shared library 
mechanism” eliminates source requirement

 Other weak copyleft licenses: less detailed; assume written offer 
option not available

 MPL-like licenses specify minimum post-binary-distribution 
time intervals

SOURCE CODE REQUIREMENTS: 
OTHER



21

 Applies to binaries distributed in/for locked-down consumer 
products if the GPLv3 software is modifiable by a third party

 Vendor must provide information sufficient to allow skilled 
developer to install functioning modified versions on same 
device, with some limits

 No known enforcement experience
 Restoration of rights following GPLv2 termination may be 

conditioned on providing such information too

GPLv3 INSTALLATION 
INFORMATION



22

 GPLv2 features automatic termination; key enforcement tool in 
US and Germany

 GPLv3 provides two explicit cure opportunities: permanent 
restoration of rights if:

 no complaint 60 days after coming into compliance
 cure within 30 days of receipt of notice of first-time violation

 May therefore be desirable to take “GPLv2-or-later” code as 
GPLv3 to take advantage of cure

GPL AND TERMINATION



23

rfontana@redhat.com

mailto:rfontana@redhat.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

